Skip to main content

How to find All Disappeared Numbers in an Java Array | Java LeetCode Solution

Find All Numbers that are not present in Java Array from 1 to n

Find All Numbers Disappeared in java Array | leetcode problem

Problem Description :

Given an array nums of n integers where nums[i] is in the range [1, n], return an array of all the integers in the range [1, n] that do not appear in nums array.

Example 1 :

Input: nums = [1, 3, 5, 1, 3]
Output: [2, 4]

Example 2 :

Input: nums = [2, 4, 2, 4]
Output: [1, 3]

Example 3 :

Input: nums = [4, 3, 2, 7, 8, 2, 3, 1]
Output: [5, 6]

Example 4 :

Input: nums = [1, 1]
Output: [2]

In given problem, we have to return List of Integers that are not present in given array range [1 to n].

Lets see solution and its explanation step by step.

Solution 1 : Using in-place array (Without use if extra space)

import java.util.ArrayList;
import java.util.List; 

class Solution {
    public List<Integer> findDisappearedNumbers(int[] nums) {
        
        List<Integer> list = new ArrayList<Integer>();

        for (int i = 0; i < nums.length; i++) {

            // Get current value-1
            int numberIndex = Math.abs(nums[i]) - 1;

            // change positive value to negative
            if (nums[numberIndex] > 0) {
                nums[numberIndex] = -nums[numberIndex];
            }
        }

        for (int i = 0; i < nums.length; i++) {
            if (nums[i] > 0) {
                list.add(i + 1);
            }
        }
        return list;
    }
}

Solution explanation :

  • Traverse through given array from left to right.
  • Get current index value. Math.abs() used for get negative integers to positive integers. Subtract number by 1. (Array index start from 0 and we have to check from 1 to n).
  • Check numberIndex is greater or not. If it is greater than 0, change that value from positive to negative.
  • In second for loop, add those numbers into list that are greater than 0.
  • return list of integers.

Output explanation :

nums = [1, 3, 5, 1, 3]

  •  i = 0
    • Get positive value | numberIndex = Math.abs(nums[i]) | 1
    • Subtract -1 from value | 1 - 1 = 0
    • nums[numberIndex] > 0 | 1 > 0 becomes true.
      • nums[numberIndex] = -nums[numberIndex];
      • Change 1 to -1 | 1 = -1 

  • i = 1, nums = [-1, 3, 5, 1, 3] 
    • 3 - 1 = 2
    • 5 > 0 becomes true.
      • 5 = -5

  • i = 2, nums = [-1, 3, -5, 1, 3]
    • 5 - 1 = 4
    • 3 > 0 becomes true.
      • 3 = -3

  • i = 3, nums = [-1, 3, -5, 1, -3]
    • 1 - 1 = 0
    • -1 > 0 becomes false

  • i = 4, nums = [-1, 3, -5, 1, -3]
    • 3 - 1 = 2
    • -5 > 0 becomes false

  • Traversal of first for loop is done. nums = [-1, 3, -5, 1, -3]

  • Second For loop
  • i = 0, list = []
    • nums[i] > 0 | -1 > 0 becomes false

  • i  = 1, list = []
    • 3 > 0 becomes true
      • list.add(i + 1) |  list = [2]

  • i = 2, list = [2]
    • -5 > 0 becomes false

  • i  = 3, list = [2]
    • 1 > 0 becomes true
      • list.add(i + 1) |  list = [2, 4]

  • i = 4, list = [2, 4]
    • -5 > 0 becomes false

  • Traversal of second for loop is done.
  • return list = [2, 4] 

Lets see second solution using extra space.

Solution 2 : Using extra space

import java.util.ArrayList;
import java.util.List;

class Solution {

    public List<Integer> findDisappearedNumbers(int[] nums) {
        
        List<Integer> list = new ArrayList();

        int[] duplicateArray = new int[nums.length + 1];
        
        for (int n : nums) {
            duplicateArray[n]++;
        }
        
        for (int i = 1; i < duplicateArray.length; i++) {
            if (duplicateArray[i] == 0) {
                list.add(i);
            }
        }
        
        return list;
    }
}

Solution explanation :

  • Declare new array by +1 length of given nums array.
  • Traverse through nums array and increment given index where current n is located in duplicateArray.
  • Traverse through duplicateArray array from 1 to array length and check if any index contains 0 then add in list.
  • Return list.

Output explanation :

nums = [4, 3, 2, 7, 8, 2, 3, 1]

  • duplicateArray = [0, 0, 0, 0, 0, 0, 0, 0, 0]
  • for each loop
  • n = 4
    • duplicateArray = [0, 0, 0, 0, 1, 0, 0, 0, 0]
  • n = 3
    • duplicateArray = [0, 0, 0, 1, 1, 0, 0, 0, 0]
  • n = 2
    • duplicateArray = [0, 0, 1, 1, 1, 0, 0, 0, 0]
  • n = 7
    • duplicateArray = [0, 0, 1, 1, 1, 0, 0, 1, 0]
  • n = 8
    • duplicateArray = [0, 0, 1, 1, 1, 0, 0, 1, 1]
  • n = 2
    • duplicateArray = [0, 0, 2, 1, 1, 0, 0, 1, 1]
  • n = 3
    • duplicateArray = [0, 0, 2, 2, 1, 0, 0, 1, 1]
  • n = 1
    • duplicateArray = [0, 1, 2, 2, 1, 0, 0, 1, 1]
  • duplicateArray = [0, 1, 2, 2, 1, 0, 0, 1, 1]

  • For loop (Start from 1), duplicateArray = [0, 1, 2, 2, 1, 0, 0, 1, 1]
  • i = 1,
    • duplicateArray[1] == 0 | 1 == 0 becomes false

  • i = 2, list = []
    • 2 == 0 becomes false

  • i = 3, list = []
    • 2 == 0 becomes false

  • i = 4, list = []
    • 1 == 0 becomes false

  • i = 5, list = []
    • 0 == 0 becomes true
      • list.add(i) | list = [5]

  • i = 6, list = [5]
    • 0 == 0 becomes true
      • list.add(i) | list = [5, 6]

  • i = 7, list = [5, 6]
    • 1 == 0 becomes false

  • i = 8, list = [5, 6]
    • 1 == 0 becomes false

  • Return list = [5, 6] 

Lets see another solution using java 8 approach

Solution 3 : Using java 8

import java.util.Arrays;
import java.util.Set;
import java.util.stream.Collectors;
import java.util.stream.IntStream;

class Solution {
  
        public List<Integer> findDisappearedNumbers(int[] nums) {
             
        Set<Integer> set = Arrays.stream(nums).boxed().collect(Collectors.toSet());

        return IntStream.range(1, nums.length + 1)
                    .filter(number -> !set.contains(number))
                    .boxed()
                    .collect(Collectors.toList());

    }
}

Solution explanation :

  • Convert array to set. set deos not store duplicate values. 
  • .boxed() method converts a stream of objects to a collection.
  • IntStream.range returns a sequential ordered IntStream from startInclusive to endExclusive by an incremental step of 1 (here we are range from 1 to nums array length + 1).
  • using Java 8 stream filter() method, we are filtering value that are not present in set and collect using Collectors.toList() to list and return list.
  • Learn about java 8 collect method.


Happy coding.

Recommended articles :


Comments

Popular posts from this blog

Sales by Match HackerRank Solution | Java Solution

HackerRank Sales by Match problem solution in Java   Problem Description : Alex works at a clothing store. There is a large pile of socks that must be paired by color for sale. Given an array of integers representing the color of each sock, determine how many pairs of socks with matching colors there are. For example, there are n=7 socks with colors socks = [1,2,1,2,1,3,2]. There is one pair of color 1 and one of color 2 . There are three odd socks left, one of each color. The number of pairs is 2 .   Example 1 : Input : n = 6 arr = [1, 2, 3, 4, 5, 6] Output : 0 Explanation : We have 6 socks with all different colors, So print 0. Example 2 : Input : n = 10 arr = [1, 2, 3, 4, 1, 4, 2, 7, 9, 9] Output : 4 Explanation : We have 10 socks. There is pair of color 1, 2, 4 and 9, So print 4. This problem easily solved by HashMap . Store all pair of socks one by one in Map and check if any pair is present in Map or not. If pair is present then increment ans variable by 1 ...

Queen's Attack II HackerRank Solution in Java with Explanation

Queen's Attack II Problem's Solution in Java (Chessboard Problem)   Problem Description : You will be given a square chess board with one queen and a number of obstacles placed on it. Determine how many squares the queen can attack.  A queen is standing on an n * n chessboard. The chess board's rows are numbered from 1 to n, going from bottom to top. Its columns are numbered from 1 to n, going from left to right. Each square is referenced by a tuple, (r, c), describing the row r and column c, where the square is located. The queen is standing at position (r_q, c_q). In a single move, queen can attack any square in any of the eight directions The queen can move: Horizontally (left, right) Vertically (up, down) Diagonally (four directions: up-left, up-right, down-left, down-right) The queen can move any number of squares in any of these directions, but it cannot move through obstacles. Input Format : n : The size of the chessboard ( n x n ). k : The number of obstacles...