Skip to main content

How to find Factorials of Extra Long Number in Java | Factorial of BigInterger

Find Factorial of Extra Long Number | Factorial of BigInteger in Java | HackerRank Problem

Find Factorial of Extra Long Number | Factorial of BigInteger in Java

Problem Description :

Calculate and print the factorial of a given integer. 

The factorial of the integer n, written n!, is defined as:

n! = n * (n - 1) * (n - 2) * ... * 3 * 2 * 1

Example 1 :

n = 30 

ans = 265252859812191058636308480000000

Explanation = 30 * 29 * 28 * 27 * .... * 3 * 2 *1

Example 2 : 

n = 50

ans = 30414093201713378043612608166064768844377641568960512000000000000

We can not store large number in Long data type as well. So we need BigInteger for that. 

BigInteger class presents in java.math package. For use BigInteger we need to import math package first.

Checkout How we can divide and compute modulo of BigInteger in Java :

Lets solve long number factorial problem.

Solution 1 : Factorial of Extra long number in Java


import java.math.BigInteger;
import java.util.Scanner;

public class ExtraLongFactorials {

    public static void main(String[] args) {
        
        Scanner sc = new Scanner(System.in);
        System.out.println("Enter n");
        int n = sc.nextInt();

        factorial(n);
    }

    public static void extraLongFactorials(int n) {
        
        BigInteger
 factorial = BigInteger.ONE;

        for (int i = n; i > 0; i--) {
            factorial = factorial.multiply(BigInteger.valueOf(i));
        }
        
        System.out.println(factorial);
    }
}

Output :

n = 30
265252859812191058636308480000000

n = 50
30414093201713378043612608166064768844377641568960512000000000000

We can see that how large factorial of 30 and 50 is, clearly it is not possible to use long data type to store huge integer values. We need BigInteger Class to store such large numbers.

Lets see another solution with while loop.

 

Solution 2 : Find Factorial of BigInteger in Java


import
 java.math.BigInteger;
import java.util.Scanner;

public class ExtraLongFactorials {

    public static void main(String[] args) {
        
        Scanner sc = new Scanner(System.in);
        System.out.println("Enter n");
        int n = sc.nextInt();

        System.out.println(factorial(n));
        
    }
    
    public static void factorial(int n) {
        
        BigInteger factorial = BigInteger.ONE;
        
        while(n > 1){
            factorial = factorial.multiply(BigInteger.valueOf(n));
            n--;
        }
        
        System.out.println(factorial);

    }

}

 

RECOMMENDED ARTICLES :

 

 

 

 

 

 

 

Comments

Popular posts from this blog

Sales by Match HackerRank Solution | Java Solution

HackerRank Sales by Match problem solution in Java   Problem Description : Alex works at a clothing store. There is a large pile of socks that must be paired by color for sale. Given an array of integers representing the color of each sock, determine how many pairs of socks with matching colors there are. For example, there are n=7 socks with colors socks = [1,2,1,2,1,3,2]. There is one pair of color 1 and one of color 2 . There are three odd socks left, one of each color. The number of pairs is 2 .   Example 1 : Input : n = 6 arr = [1, 2, 3, 4, 5, 6] Output : 0 Explanation : We have 6 socks with all different colors, So print 0. Example 2 : Input : n = 10 arr = [1, 2, 3, 4, 1, 4, 2, 7, 9, 9] Output : 4 Explanation : We have 10 socks. There is pair of color 1, 2, 4 and 9, So print 4. This problem easily solved by HashMap . Store all pair of socks one by one in Map and check if any pair is present in Map or not. If pair is present then increment ans variable by 1 ...

Queen's Attack II HackerRank Solution in Java with Explanation

Queen's Attack II Problem's Solution in Java (Chessboard Problem)   Problem Description : You will be given a square chess board with one queen and a number of obstacles placed on it. Determine how many squares the queen can attack.  A queen is standing on an n * n chessboard. The chess board's rows are numbered from 1 to n, going from bottom to top. Its columns are numbered from 1 to n, going from left to right. Each square is referenced by a tuple, (r, c), describing the row r and column c, where the square is located. The queen is standing at position (r_q, c_q). In a single move, queen can attack any square in any of the eight directions The queen can move: Horizontally (left, right) Vertically (up, down) Diagonally (four directions: up-left, up-right, down-left, down-right) The queen can move any number of squares in any of these directions, but it cannot move through obstacles. Input Format : n : The size of the chessboard ( n x n ). k : The number of obstacles...