Skip to main content

How to solve Forming a Magic Square Problem? | Java Solution

Java Solution for Forming a Magic Square Problem | HackerRank Problem

3 * 3 Magic Square in Java

Problem Description :

We define a to be an n * n matrix of distinct positive integers from 1 to n^2 where the sum of any row, column, or diagonal of length n is always equal to the same number: the magic constant.

You will be given a 3 * 3 matrix of integers in the inclusive range [1, 9]. We can convert any digit 'a' to any other digit 'b' in the range [1, 9] at cost of |a - b|. Given s, convert it into a magic square at minimal cost. Print this cost on a new line.

In recreational mathematics, a square array of numbers, usually positive integers, is called a magic square if the sums of the numbers in each row, each column, and both main diagonals are the same.

3 * 3 Magic square

There are 8 ways to make a 3×3 magic square. See below image for reference.

8 ways to make a 3×3 magic square

Example 1 :

Input :

5 3 4
1 5 8
6 4 2

Output :


8 3 4
1 5 9
6 7 2

This took three replacements at a cost of |5 - 8| + |8 - 9| + |4 - 7| = 3 + 1 + 3 = 7.

Example 2 :

Input :

4 8 2
4 5 7
6 1 6

Output :

4

4 9 2
3 5 78
1 6

This took three replacements at a cost of |9 - 8| + |3 - 4| + |8 - 6| =  1 + 1 + 2 = 4.

Solution 1 :  Forming a Magic Square Solution in Java

import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;

public class FormingAMagicSquare {

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int rowSize = 3;
        int colSize = 3;
        List<List<Integer>> list = new ArrayList<List<Integer>>();
        List<Integer> arrRow = null;
        System.out.println("insert data");
        for (int i = 0; i < rowSize; i++) {
            arrRow = new ArrayList<Integer>();
            for (int j = 0; j < colSize; j++) {
                arrRow.add(sc.nextInt());
            }
            list.add(arrRow);
        }

        System.out.println(formingMagicSquare(list));
    }
    
    public static int formingMagicSquare(List<List<Integer>> list) {
       
        int[][] allMagicSquare = {
                { 4, 9, 2, 3, 5, 7, 8, 1, 6 },      
                { 2, 7, 6, 9, 5, 1, 4, 3, 8 },
                { 6, 1, 8, 7, 5, 3, 2, 9, 4 },
                { 8, 3, 4, 1, 5, 9, 6, 7, 2 },
                { 2, 9, 4, 7, 5, 3, 6, 1, 8 },
                { 6, 7, 2, 1, 5, 9, 8, 3, 4 },
                { 8, 1, 6, 3, 5, 7, 4, 9, 2 },
                { 4, 3, 8, 9, 5, 1, 2, 7, 6 }
        };

        int minValue = Integer.MAX_VALUE;
       
        for (int i = 0; i < allMagicSquare.length; i++) {
            int total = 0;

            // Check all Magic Square data with given array
            for (int j = 0; j < allMagicSquare[i].length; j++) {
                total = total + Math.abs(list.get(j / 3).get(j % 3) - allMagicSquare[i][j]);
            }

            if (total < minValue) {
                minValue = total;
            }
        }
        return minValue;
    }

}

Solution Explanation :

  • We have only 8 possibilities to create 3*3 square. So first initialize 2D array with all magic squares.
  • Now create two loop, outer and inner. Outer for rows and inner for columns like (0,0), (0,1), (0,2), (0,3), (0,4), (0,5), (0,6), (0,7), (0,8), (1,0), (1,1), (1,2), (1,3) and so on until (8,8).
  • We have 3*3 matrix as input, so we are checking all 9 values with given magic squares one by one and stores total changed value in total variable.
  • Last if total is less then minValue then store total to minValue.
  • Return minValue.


RECOMMENDED TUTORIALS :



Comments

Popular posts from this blog

Flipping the Matrix HackerRank Solution in Java with Explanation

Java Solution for Flipping the Matrix | Find Highest Sum of Upper-Left Quadrant of Matrix Problem Description : Sean invented a game involving a 2n * 2n matrix where each cell of the matrix contains an integer. He can reverse any of its rows or columns any number of times. The goal of the game is to maximize the sum of the elements in the n *n submatrix located in the upper-left quadrant of the matrix. Given the initial configurations for q matrices, help Sean reverse the rows and columns of each matrix in the best possible way so that the sum of the elements in the matrix's upper-left quadrant is maximal.  Input : matrix = [[1, 2], [3, 4]] Output : 4 Input : matrix = [[112, 42, 83, 119], [56, 125, 56, 49], [15, 78, 101, 43], [62, 98, 114, 108]] Output : 119 + 114 + 56 + 125 = 414 Full Problem Description : Flipping the Matrix Problem Description   Here we can find solution using following pattern, So simply we have to find Max of same number of box like (1,1,1,1). And ...

Sales by Match HackerRank Solution | Java Solution

HackerRank Sales by Match problem solution in Java   Problem Description : Alex works at a clothing store. There is a large pile of socks that must be paired by color for sale. Given an array of integers representing the color of each sock, determine how many pairs of socks with matching colors there are. For example, there are n=7 socks with colors socks = [1,2,1,2,1,3,2]. There is one pair of color 1 and one of color 2 . There are three odd socks left, one of each color. The number of pairs is 2 .   Example 1 : Input : n = 6 arr = [1, 2, 3, 4, 5, 6] Output : 0 Explanation : We have 6 socks with all different colors, So print 0. Example 2 : Input : n = 10 arr = [1, 2, 3, 4, 1, 4, 2, 7, 9, 9] Output : 4 Explanation : We have 10 socks. There is pair of color 1, 2, 4 and 9, So print 4. This problem easily solved by HashMap . Store all pair of socks one by one in Map and check if any pair is present in Map or not. If pair is present then increment ans variable by 1 ...